7. Scalar Multiplication

Basic Linear Algebra

For what value of the scalars $a$ and $b$, does the following result in a 0 vector?

$$ \begin{pmatrix} 1 \\ 2 \\ -1/3 \\ 4 \end{pmatrix} + a \begin{pmatrix} -9 \\ 0 \\ -1 \\ 6
\end{pmatrix} + b \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1
\end{pmatrix} $$

Submit $a + b$ as your answer in the rational form.

A scalar is a number--as opposed to a vector. A scalar can be a real number or a complex number. Multiplying a vector with a scalar $c$ results in another vector where all the components are multiplied by $c$. Fro example:

$$ c \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{pmatrix}. $$

With a choice of $a = -1/3$ and $b = 2$ we have

$$ \begin{pmatrix} 1 \\ 2 \\ -1/3 \\ 4 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -9 \\ 0 \\ -1 \\ 6
\end{pmatrix} + 2 \begin{pmatrix} -2 \\ -1 \\ 0 \\ 1
\end{pmatrix} $$

$$ =\begin{pmatrix} 1 \\ 2 \\ -1/3 \\ 4 \end{pmatrix} +
\begin{pmatrix} 3 \\ 0 \\ 1/3 \\ -2
\end{pmatrix} + \begin{pmatrix} -4 \\ -2 \\ 0 \\ 2
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0
\end{pmatrix} $$

The above vector with all components set to zero is called a zero vector. In the future, whenever needed, we will explicitly distinguish between a zero vector and the scalar 0. The scalar multiplication of a zero vector $0$ by any scalar $c$ is the same zero vector, that is, $c 0 = 0$.